Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
American Journal of Translational Research ; 13(6):5943-5955, 2021.
Article in English | EMBASE | ID: covidwho-1445036

ABSTRACT

The effects of temperature and relative humidity on the growth of coronavirus disease 2019 (COVID-19) remain unclear. Data on the COVID-19 epidemic that were analyzed in this study were obtained from the official websites of the National Health Commission of China and the Health Commissions of 31 provinces in China. From January 26 to February 25, 2020, the cumulative number of confirmed COVID-19 cases in each region was counted daily using data from our database. Curve fitting of daily scatter plots of the relationship between epidemic growth rate (GR) with average temperature (AT) and average relative humidity (ARH) was conducted using the loess method. The heterogeneity across days and provinces was calculated to assess the necessity of using a longitudinal model. Fixed-effect models with polynomial terms were developed to quantify the relationship between variations in the GR and AT or ARH. An increased AT markedly reduced the GR when the AT was lower than -5°C, the GR was moderately reduced when the AT ranged from -5°C to 15°C, and the GR increased when the AT exceeded 15°C. ARH increased the GR when it was less than 72% and reduced the GR when it exceeded 72%. The temperature and relative humidity curves were not linearly associated with the GR of COVID-19. The GR was moderately reduced when the AT ranged from -5°C to 15°C. When the AT was lower or higher than -5°C to 15°C, the GR of COVID-19 increased. An increased ARH increased the GR when the ARH was lower than 72% and reduced the GR when the ARH exceeded 72%.

SELECTION OF CITATIONS
SEARCH DETAIL